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Abstract
We demonstrate that a Langevin equation that describes the motion of a
Brownian particle under non-equilibrium conditions can be exactly transformed
to a special equation that explicitly exhibits the response of the velocity to a
time-dependent perturbation. This transformation is constructed on the basis
of an operator formulation originally used in nonlinear perturbation theory for
differential equations by extending it to stochastic analysis. We find that the
expression obtained is useful for the calculation of fundamental quantities of
the system, and that it provides a physical basis for the decomposition of the
forces in the Langevin description into effective driving, dissipative and random
forces in a large-scale description.

PACS numbers: 02.50.Fz, 05.10.Gg, 05.40.Jc

1. Introduction

Owing to technological advances in the methods of manipulating systems on sub-micrometre
length scales in aqueous solution, there is increased interest in studying the non-equilibrium
nature of such small systems. Recent studies have yielded several universal relations, including
the fluctuation theorem [1], the Jarzynski equality [2] and the Hatano–Sasa non-equilibrium
steady state equality [3], and the validity of these relations has been verified experimentally
in small systems consisting of beads and bead-RNA complexes [4–6]. In addition to the
verification of these equalities, there is an interesting experimental study providing new
information concerning the nature of non-equilibrium systems, in which the velocity response
to an external perturbation and the correlation of the corresponding fluctuations were measured
in a bead system [7]. We should also mention that there has been a substantial progress in
understanding stochastic resonance [8, 9].
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Although great progress has been made in the experimental investigation of such small
systems, direct measurements have been possible only for kinematic quantities, such as the
position of a bead. Given this situation, in order to elucidate the mechanics of small systems,
it is necessary to extract information regarding mechanical quantities, such as ‘force’ and
‘energy’, from kinematic quantities. However, this task is not easily accomplished in general.
For instance, consider the problem of guessing the equation of motion of a motor protein on
the basis of experimental results. It can then be understood why it is difficult to determine an
effective potential for the centre of mass and to evaluate the size of dissipation effects, because
neither a canonical distribution nor a fluctuation–response relation exists for non-equilibrium
systems. (By contrast, these can be utilized to determine an effective potential and a dissipation
strength near equilibrium states.)

In this paper, we study a non-equilibrium Langevin system for the purpose of developing
a new theoretical method to extract information regarding mechanical quantities in small
systems. Specifically, we attempt to re-express a Langevin equation in terms of directly
measurable quantities. Here, let us recall that, for differential equations, there exists a
theoretical method by which, for example, a Rayleigh equation that describes nonlinear
oscillations can be transformed perturbatively into a simple equation displaying the observed
frequency [10]. Following this idea, it might be useful if we could transform a Langevin
equation into a special form that makes mechanical properties manifest. Specifically, motivated
by a recent phenomenological study of energy efficiency [11], we regard the response to a
time-dependent perturbative force as a key property that connects kinematic and mechanical
quantities.

Here, we point out that a Langevin equation is equivalent to the corresponding Fokker–
Planck equation as long as we consider statistical properties. However, when we study
problems related to force and energy, analysis of a Langevin equation is more appropriate,
because it can be regarded as an equation of force balance. Furthermore, physical quantities for
a single trajectory, which are often observed in bio-mechanical systems [12], can be described
only by a Langevin equation. For these reasons, we seek a useful representation of a Langevin
equation rather than a Fokker–Planck equation.

Explicitly, we study the simple one-dimensional Langevin equation

γ ẋ(t) = f − U ′(x(t)) + ξ(t) + εfp(t). (1)

Here, γ is a friction constant, f is a constant driving force, U(x) is a periodic potential of
period � and the prime denotes differentiation. Also, ξ(t) is Gaussian white noise satisfying

〈ξ(t)ξ(s)〉 = 2γ T δ(t − s), (2)

where 〈· · ·〉 denotes the average over all noise histories. (See [13, 14] for discussion of the
physical basis of this equation in the case ε = 0.) The term εfp(t) with sufficiently small ε

represents a perturbation force we use to investigate the response of the system. An initial
condition x(t0) = x0 is given at t = t0, and we often take the limit t0 → −∞. In the argument
below, we denote the average over all noise histories in the limit t0 → −∞ as 〈· · ·〉ε. Under
these conditions, there exists the time-dependent distribution function p∞(θ, t), such that the
relation

〈A(x(t))〉ε =
∫ �

0
dθA(θ)p∞(θ, t) (3)

is satisfied for any �-periodic function A(θ). Note that p∞(θ, t) can be expanded in the form

p∞(θ, t) = pst(θ) + εp(1)(θ, t) + O(ε2). (4)

With the above preparation, in section 2, we prove the following theorem.
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Theorem. Under the condition t0 → −∞, equation (1) can be transformed into the form∫ ∞

0
dsL(s)(ẋ(t − s) − vs) =

∫ ∞

0
dsL(s)ζ(t − s) + ξ(t) + εfp(t), (5)

where vs ≡ 〈ẋ(t)〉0 is the steady-state velocity. The function L(s) here is determined by the
system parameters γ , f,U(x) and T, and is independent of ε. L(s) is determined so that
it satisfies the causality property, i.e., L(t) = 0 for t < 0. The function ζ(t) depends on
{x(s)}t0�s�t , {ξ(s)}t0�s�t and {fp(s)}t0�s�t , and most importantly it satisfies the relation

〈ζ(t)〉ε = O(ε2). (6)

These functions, L(s) and ζ(s), are determined from the set of eigenfunctions of the Fokker–
Planck operator corresponding to the Langevin equation (1), as explained in section 2.3.

We now explain the physical significance of this theorem. First, note that (5) is equivalent
to the form

ẋ(t) − vs = ζ(t) +
∫ ∞

0
dsR(s)(ξ(t − s) + εfp(t − s)). (7)

Here, the quantity R(t) is determined from L(t) through the relation

R̃(ω) = L̃(ω)−1, (8)

where R̃(ω) and L̃(ω) are the Fourier transforms of R(t) and L(t). R(t) for t > 0 is obtained
by the inverse Fourier transform and we also require the causality as R(t) = 0 for t < 0.
Throughout this paper, we use similar notation, with the Fourier transform of an arbitrary
function A(t) given by

Ã(ω) =
∫ ∞

−∞
dt eiωtA(t). (9)

Then, the average of (7) becomes

〈ẋ(t)〉ε − vs = ε

∫ ∞

0
dsR(s)fp(t − s) + O(ε2). (10)

This equation characterizes the linear response of the velocity to the perturbation. We
therefore call R(s) a ‘response function’. Its Fourier transform, R̃(ω), is called the ‘dynamic
susceptibility’. Expression (7), which is equivalent to the original equation of motion (1),
explicitly represents the response to a perturbation.

Next, we show how expression (5) is related to the problem of force decomposition in a
large-scale description. Let us express the force acting on the particle at time t as

φ(t) ≡ f − U ′(x(t)) (11)

and consider a finite time average of φ(t). For convenience, we express the finite time average
of a quantity A(t) as

Āτ (t) = 1

τ

∫ t+τ

t

dsA(s). (12)

From (1), (5), (11) and (12), we find

φ̄τ (t) = γ
x(t + τ) − x(t)

τ
+

∫ ∞

0
dsL(s)ζ̄τ (t − s)

−
∫ ∞

0
dsL(s)

(
x(t − s + τ) − x(t − s)

τ
− vs

)
. (13)
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We now assume that τ is sufficiently larger than the inverse of the smallest decay rate of L(s).
Then, because Āτ (t) varies slowly with respect to t, (13) becomes

φ̄τ (t) � L̃(0)vs − (L̃(0) − γ )
x(t + τ) − x(t)

τ
+ L̃(0)ζ̄τ (t). (14)

This expression implies that a time-averaged force φ̄τ (t) can be decomposed into a driving
force (the first term), a dissipative force (the second term) and a random force (the third term).
In [15], the force decomposition for a large-scale description with (1) is investigated, and it is
shown that the condition

lim
τ→∞ τ 〈ζ̄τ ξ̄τ 〉0 = 0 (15)

uniquely determines the force decomposition of the type given in (14). In other words, only
the component orthogonal to ξ̄τ is regarded as a random component of φ̄τ in such a description.
In section 2.4, we confirm that this orthogonality condition is satisfied. Actually, we have
arrived at expression (5) by seeking a definition of ζ(t) for which (15) holds. In this sense,
(15) was the guiding principle used in obtaining the transformation yielding (5) from (1).

In section 3, we demonstrate that expression (7) is useful for calculating fundamental
statistical quantities. As already stated, the susceptibility R̃(ω) is obtained as the Fourier
transform of R(t). In appendix A, we provide a consistency check of our theory by comparing
this quantity R̃(ω) with an expression that is obtained directly from the definition of the
dynamic susceptibility. Furthermore, the Fourier transform C̃(ω) of the time correlation of
velocity fluctuations,

C(t) ≡ 〈(ẋ(t) − vs)(ẋ(0) − vs)〉0, (16)

can also be calculated directly from (7). In particular, for the case ω = 0, we can derive the
following formulae:

R̃(0) = �

γ

∫ �

0 dθI−(θ)I+(θ)(∫ �

0 dxI−(θ)
)2 , (17)

C̃(0)

2
= T

γ
�2

∫ �

0 dθI−(θ)I+(θ)2(∫ �

0 dθI−(θ)
)3 , (18)

where

I±(θ) =
∫ �

0
dθ ′ e±βU(θ)∓βU(θ∓θ ′)−βf θ ′

, (19)

with β ≡ 1/T . The key technical lemma used in the derivations of the above relations is
proved in appendix B.

We note that R̃(0) is equal to the differential mobility, dvs/df , and that expression (17)
was calculated from the functional form of vs(f ) given in [16]. Also, C̃(0)/2 is equal to the
diffusion constant D defined by

D ≡ lim
t→∞

1

2t
〈(x(t) − x(0) − vst)

2〉0. (20)

Expression (18) was first derived in [14] employing a recursion formula that is established
in the theory of stochastic processes. Subsequently, the same expression was obtained in
a perturbation theory treatment applied to the Fokker–Planck equation corresponding to (1)
[16]. The method of derivation used in the present work is different from those used in the
previous studies.
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Furthermore, from the correspondence of R̃(0) with dvs/df and from the definition of
D in (20), the nature of each term in the force decomposition (14) is clearly understood. By
substituting (14) into the τ -averaged form of (1), we obtain a large-scale description of the
Langevin equation:

L̃(0)
x(t + τ) − x(t)

τ
= L̃(0)vs + ξ̄τ (t) + L̃(0)ζ̄τ (t). (21)

The effective dissipation coefficient, L̃(0), is the inverse of the differential mobility R̃(0) as
explained in (8). The magnitude of the fluctuating forces, 〈(ξ̄τ (t)+ L̃(0)ζ̄τ (t))

2〉0, is expressed
in terms of the diffusion constant as 2D/R̃(0)2, which provides the renormalization of the bare
noise intensity 2γ T . These quantities are obtained by use of the explicit expressions given in
(17) and (18).

2. Proof of theorem

2.1. Operator formulation

In order to make the argument mathematically clearer, we express the Langevin equation (1)
as

γ dx(t) = {f − U ′(x(t))} dt +
√

2γ T dw(t) + εfp(t) dt, (22)

where w(t) represents a Wiener process [17]. Let A(x) be an arbitrary function of x. Then,
Itô’s formula gives

dA(x(t)) = F(x(t))

γ
A′(x(t)) dt +

T

γ
A′′(x(t)) dt +

√
2T

γ
A′(x(t)) · dw +

1

γ
εfp(t)A

′(x(t)) dt,

(23)

where

F(x) ≡ f − U ′(x). (24)

Here, · represents the product in the Itô interpretation. In conventional notation, this is written
as

dA(x(t))

dt
= �A(x)|x=x(t) + A′(x(t)) · 1

γ
(ξ(t) + εfp(t)), (25)

where

� ≡ F(x)

γ

∂

∂x
+

T

γ

∂2

∂x2
. (26)

We can express the solution of (25) in the form

A(x(t)) = G(t)A(x)|x=x0 (27)

by introducing a time-dependent operator, G(t), that does not depend on A(x). Substituting
(27) into (25), we obtain an equation for G(t) as

dG(t)

dt
= G(t)� + G(t)

∂

∂x
· 1

γ
(ξ(t) + εfp(t)). (28)

With the initial condition G(t0) = 1, the formal solution of this equation is derived as

G(t) = e(t−t0)� +
∫ t−t0

0
dsG(t − s)

∂

∂x
es� · 1

γ
(ξ(t − s) + εfp(t − s)). (29)
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Thus, because the force acting on the particle at time t is given by

φ(t) = F(x(t))

= G(t)F (x)|x=x0 , (30)

we obtain

φ(t) = e(t−t0)�F (x)|x=x0 +
∫ t−t0

0
ds

ξ(t − s) + εfp(t − s)

γ
· ∂

∂x
es�F (x)|x=x(t−s), (31)

where we have used (27) in the derivation of the second term on the right-hand side.
In this way, we have reformulated the original nonlinear stochastic differential equation

in terms of the operator �. We note that a theoretical framework for carrying out such
a reformulation in the case of differential equations was developed through application of
nonlinear perturbation theory [18]. Also, analysis based on the ‘microscopic distribution
function’ [19] is essentially the same as the present formulation.

2.2. Preparation of functional space

In order to make our investigation of (31) concrete, we introduce a functional space, H,
consisting of all complex-valued, square integrable, periodic functions of θ on the interval
0 � θ � �. We endow this space with the inner product

(h1, h2) =
∫ �

0
dθh∗

1(θ)h2(θ), (32)

for h1, h2 ∈ H, where ∗ denotes complex conjugation. All the eigenvalues, −λj , and the
corresponding eigenfunctions, �j(θ), of the operator � in H are determined by the equation

��j(θ) = −λj�j (θ), (33)

where the index j = 0,±1,±2, . . . is determined by the relations λj = λ∗
−j and λ0 =

0 < Re(λ±1) < Re(λ±2) < · · · holding among their eigenvalues. When a complex eigenvalue
happens to be degenerate, the corresponding labelling is modified appropriately.

Because � given in (26) is not a Hermitian operator on H, it is convenient to introduce
the adjoint operator of � through the relation

(LFPh1, h2) ≡ (h1,�h2), (34)

where LFP is the Fokker–Planck operator:

LFP = − 1

γ

∂

∂θ
F (θ) +

T

γ

∂2

∂θ2
. (35)

Note that the set of eigenvalues of LFP is identical to that of �. Then, we denote the
eigenfunctions of LFP by �j(θ) and choose their labelling so that we have

LFP�j(θ) = −λ∗
j�j (θ). (36)

We can choose these eigenfunctions such that the following hold:∫ �

0
dθ�∗

i (θ)�j (θ) = δij , (37)

∞∑
j=−∞

�∗
j (θ)�j (θ

′) = δ(θ − θ ′). (38)
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In particular, we determine the normalization factor for the zero eigenfunctions

�0(θ) = pst(θ), (39)

�0(θ) = 1. (40)

Because F(θ) ∈ H, we can expand F(θ) in the form

F(θ) =
∞∑

j=−∞
(�j , F )�j (θ). (41)

Here, the following relation is easily confirmed:

(�0, F ) = γ vs. (42)

Then, from (31) and (41), we obtain

φ(t) = γ vs + b(t) +
∫ t−t0

0
ds(ξ(t − s) + εfp(t − s)) · K(s, x(t − s)), (43)

with

b(t) ≡
∞∑

j=−∞,j �=0

(�j , F ) e−λj (t−t0)�j (x0) (44)

and

K(s, θ) ≡ 1

γ

∞∑
j=−∞

e−sλj (�j , F )�′
j (θ) (45)

for s > 0 and K(s, θ) ≡ 0 for s < 0. Note that b(t) satisfies the relation

lim
t0→−∞ b(t) = 0. (46)

2.3. Key step

We decompose K(s, θ) into two parts as

K(s, θ) = K0(s) + K⊥(s, θ), (47)

where we have

K0(s) ≡ (�0,K(s, ·)) (48)

for s > 0 and K0(s) ≡ 0 for s < 0. We choose this decomposition in order to satisfy the
relation

〈K⊥(s, x(t))〉0 =
∫ �

0
dθpst(θ)K⊥(s, θ)

= 0. (49)

Indeed, this equality can be derived from (37) and (39). Now, defining the quantity

ζ(t) ≡ 1

γ

∫ t−t0

0
ds(ξ(t − s) + εfp(t − s)) · K⊥(s, x(t − s)), (50)

we rewrite φ(t) as

φ(t) = γ vs + b(t) +
∫ t−t0

0
dsK0(s)(γ ẋ(t − s) − φ(t − s)) + γ ζ(t). (51)
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Here, we introduce

ϕ(t) ≡ φ(t) − γ vs, (52)

�(t) ≡ ẋ(t) − vs (53)

and take the limit t0 → −∞. The Fourier transform of (51) then yields

ϕ̃(ω) = K̃0(ω)(γ �̃(ω) − ϕ̃(ω)) + γ ζ̃ (ω). (54)

From this, we derive

ϕ̃(ω) = 1

1 + K̃0(ω)
[K̃0(ω)γ �̃(ω) + γ ζ̃ (ω)]. (55)

The inverse Fourier transform of this expression yields

φ(t) = γ ẋ(t) −
∫ ∞

0
dsL(s)(ẋ(t − s) − vs) +

∫ ∞

0
dsL(s)ζ(t − s), (56)

with

L(t) =
∫ ∞

−∞

dω

2π
e−iωt γ

1 + K̃0(ω)
(57)

for t > 0 and L(t) = 0 for t < 0. Then, recalling (11), we find that (56) leads to expression (5).
Next, using (3) and (4), we find that ζ(t) defined by (50) satisfies

〈ζ(t)〉ε = ε

γ

∫ ∞

0
dsfp(t − s)〈K⊥(s, x(t − s))〉0 + O(ε2), (58)

where we have used the Itô interpretation. Finally, from (49), we derive (6).

2.4. Remark

As seen in the above discussion, the proper definition of ζ is essential to obtain (6). We arrived
at definition (50) in the following way. Intuitively, ζ corresponds to what is in some sense the
‘random’ part of the force φ(t) for the case ε = 0. With this in mind, we assume the following
conditions:

〈ζ(t)〉0 = 0, (59)

〈ζ(t)ξ(t ′)〉0 = 0. (60)

Condition (59) is obviously necessary, and condition (60) is inspired by the orthogonality
condition (15) reported in [15]. From definition (50), it is readily confirmed

〈ζ(t)ξ(t ′)〉0 = 1

γ

∫ ∞

0
ds〈K⊥(s, x(t − s))〉0〈ξ(t − s)ξ(t ′)〉

= 0, (61)

where (49) has been used in the last line. It should be noted that condition (60) is satisfied
regardless of the interpretation of the multiplication between ζ(t) and ξ(t). Then, guided by
condition (60), we find definition (50), and this leads to the proof of (6).
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3. Application

First, we consider the response function R(t). From (45), (48) and (57), we obtain the
following expression of the dynamic susceptibility:

R̃(ω) = 1

γ


1 +

1

γ

∞∑
j=−∞

(�j , F )

λj − iω
(�0,�

′
j )


 . (62)

Replacement of the infinite sum on the right-hand side of (62) with a finite sum enables us
to calculate R̃(ω) within a required precision because the contribution of the term with large
|j | to the right-hand side in (62) becomes of the order of |j |−2 for sufficiently large |j |. The
response function R(t) is obtained from the inverse Fourier transform.

Next, note that the most important quantity characterizing the statistical properties of
fluctuations described by (1) might be the velocity correlation function (16). For the
equilibrium case, f = 0, as a result of the detailed balance condition, C(t) is determined
by R(t) through the fluctuation–response relation. However, for non-equilibrium cases, there
is no such relation. Thus, we need to derive an expression of C(t) independently of R(t).

Substituting (50) into (7), we find that it is convenient to define

M(s, θ) ≡ 1

γ
K⊥(s, θ) + R(s). (63)

We then obtain

C(t) = 2γ T

∫ ∞

0
ds〈M(s, θ)M(s − t, θ)〉0, (64)

by use of (2). Noting that C(t) = C(−t) and that M(t, θ) = 0 for t < 0, we calculate

C̃(ω) = 2γ T 〈|M̃(ω, θ)|2〉0

= 2T

γ


�0,

∣∣∣∣∣∣1 +
1

γ

∞∑
j=−∞

(�j , F )

λj − iω
�′

j

∣∣∣∣∣∣
2

 . (65)

With this expression, C̃(ω) can be calculated with a required precision for the same reason
as in the case of R̃(ω). The correlation function C(t) is obtained from the inverse Fourier
transform. We remark that the result (65) does not depend on the manner in which we interpret
the multiplication between ẋ(t) and ẋ(0) in (16).

Here, we derive more compact expressions for R̃(0) and C̃(0). First, for later convenience,
we define

V (θ) ≡ U(θ) − f θ. (66)

Obviously, F = −V ′. Then, it is easy to confirm the equality

eβf θ

∫ �

0
dθ ′ e−βU(θ−θ ′)−βf θ ′ =

∫ �

0
dθ ′ e−βV (θ ′) − (1 − eβf �)

∫ θ

0
dθ ′ e−βV (θ ′). (67)

Using this, the expression of pst(θ) obtained by solving the equation LFPpst(θ) = 0 with
standard techniques (see, e.g., [13]) can be transformed into the form

pst(θ) = I−(θ)∫ �

0 dθ ′I−(θ ′)
. (68)

Equality (67) also allows us to prove the relation

1 − 1

γ

∞∑
j=−∞

(�j , V
′)

λj

�′
j (θ) = �

I+(θ)∫ �

0 dθI−(θ)
. (69)



3808 T Harada et al

(The proof of (69) is given in appendix B.) Then, substituting (68) and (69) into both (62) and
(65) with ω = 0, we obtain (17) and (18).

Before ending this section, we discuss the similarities and the differences between our
formulation and the standard analysis on the basis of the Fokker–Planck equation. We first
emphasize that calculation of statistical quantities by use of (7) is in principle equivalent to that
using the Fokker–Planck equation that corresponds to the Langevin equation (1). In practice,
we should use either formulation depending on the character of the concerned quantity. For
example, statistics of an arbitrary function of x(t) can be more easily calculated in the Fokker–
Planck formulation. A class of quantities such as the multiple-time correlation functions of
x(t)−x(0), which is calculated in the Fokker–Planck formulation, can also be easily calculated
from (7) by considering products of the x variables and subsequently averaging over statistical
realizations.

On the other hand, as an advantage of our formulation, the calculation of statistical
quantities involving ẋ(t) is facilitated by use of our formulation. For example, as seen in
the above argument, the time correlation function of the velocity fluctuations, C(t), can be
easily calculated in our formulation, while such a calculation seems rather difficult, but not
impossible, in the Fokker–Planck formulation. Also, owing to the form of (7), it provides a
powerful tool to find a statistical quantity connected to the response function. Recently, an
illuminating example using this advantage has been demonstrated in [20], in which the steady
heat flux has been expressed in terms of the violation of fluctuation–dissipation relation.

4. Concluding remarks

In this paper, we presented the exact transformation of the Langevin equation (1) to (5) as an
example. Our theory may provide a novel way of understanding the ‘force’ in a Langevin
system as well as a new method to calculate R̃(ω) and C̃(ω) simultaneously. Due to the
general nature of the argument used in its derivation, our theory can be applied to various
stochastic systems. For example, it is straightforward to study a Büttiker model [21] using our
theory. For other models, with time-dependent potentials [22–25], some additional techniques
must be designed in order to construct a special expression that explicitly exhibits a response
function. We will report such studies in a separate paper.

The connection of the theory presented here to experimental studies is most important.
As an example, suppose that we have an experimental system consisting of a small particle
exhibiting a fluctuating movement on a one-dimensional track and that the mechanics of the
system is under investigation. Then, the function L(s) can be determined from the response to
a time-dependent perturbation by using (8) and (10), and the statistical properties of ζ(t) can
be determined from the time correlation of ẋ(t) by using (50), (63) and (65). Given this L(t)

and the statistics of ζ(t), we can write an equation of the form (5) where ζ(t) is replaced with
artificial random noise satisfying the observed statistics. Such an equation can be considered
as the equation of motion for this system provided that the history dependence of ζ(t) is
negligible. Although, strictly speaking, ζ depends on the history of x, this description may
provide a good starting point for the construction of a phenomenological theory [11].

The idea of re-expressing differential equations reminds us of the normal form theory,
whose goal is to transform the equation in question into as ‘simple’ a form as possible. The
normal form theory was extended to stochastic processes, with the main focus on bifurcation
problems [26–28]. Furthermore, mathematical techniques for random normal forms have been
developed [29]. However, as far as we are aware, the transformation of (1) to (5) has never
been presented.
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In another related work, a generalized Langevin equation with a memory function was
derived from a nonlinear Langevin equation by employing a projection operator method [19].
In this method, functions of dynamical variables are projected onto a subspace of interest, by
using the so-called Mori identity [30]. Then, the choice of the projection operator represents the
essence of the problem when considering whether the obtained result is physically meaningful,
as pointed out in [31]. However, as far as we understand, there was no such discussion in
[19]. Of course, whatever method we use, the important point is whether the obtained result
is related to quantities and relations that can be measured experimentally. The determination
of dissipative and other forces should be done in such a way that it is clear how they can be
measured experimentally.
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Appendix A. Verifying formula (57)

Here, we confirm the validity of formula (57) by directly calculating the response function
from its definition (10). To this end, we utilize a perturbation force, fp(t), that takes the form
of a step function: fp(t) = 0 for t � 0 and fp(t) = 1 for t > 0. Then, we have

〈ẋ(t)〉ε − vs = ε

∫ t

0
dsR(s) + O(ε2). (A.1)

Using (3), the left-hand side of this equation can be expressed as

〈ẋ(t)〉ε − vs =
∫ �

0
dθp∞(θ, t)

F (θ) + εfp(t)

γ
− vs. (A.2)

The function p∞(θ, t) satisfies the equation

∂

∂t
p∞(θ, t) =

(
LFP − ε

γ
fp(t)

∂

∂θ

)
p∞(θ, t), (A.3)

with the initial condition p∞(θ, 0) = pst(θ).
Substituting the expanded form (4) into (A.3) and extracting terms proportional to ε, we

obtain
∂

∂t
p(1)(θ, t) = LFPp

(1)(θ, t) − 1

γ
fp(t)p

′
st(θ). (A.4)

Next, we write p(1)(θ, t) in terms of the eigenfunctions of LFP:

p(1)(θ, t) =
∞∑

j=−∞
p

(1)
j (t)�∗

j (θ). (A.5)

Substituting this form into (A.4), we obtain

ṗ
(1)
j (t) = −λjp

(1)
j (t) +

1

γ
fp(t)(�0,�

′
j ). (A.6)

Integration of (A.6) with the initial condition p
(1)
j (0) = 0 yields

p
(1)
j (t) = 1

γ
fp(t)(�0,�

′
j )

∫ t

0
ds e−λj s . (A.7)
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Using the results (A.5) and (A.7), we express (A.2) as

〈ẋ(t)〉ε − vs = ε

γ


fp(t) +

1

γ

∞∑
j=−∞

fp(t)(�0,�
′
j )(�j , F )

∫ t

0
ds e−λj s


 + O(ε2). (A.8)

Comparing this with (A.1), we find

γR(t) = δ(t) +
∞∑

j=−∞

1

γ
(�j , F ) e−λj t (�0,�

′
j ). (A.9)

The Fourier transformation of this relation gives

γ R̃(ω) = 1 +
∞∑

j=−∞

1

γ

(�j , F )

λj − iω
(�0,�

′
j ), (A.10)

which is found to be equivalent to (62).

Appendix B. Proof of (69)

Differentiating (33) with respect to θ , we obtain

�‡�′
j = −λj�

′
j , (B.1)

with

�‡ ≡ − 1

γ

∂

∂θ
V ′(θ) +

T

γ

∂2

∂θ2
. (B.2)

Because �′
j is an eigenfunction of �‡, below we employ the notation

�
‡
j ≡ �′

j . (B.3)

The operator adjoint to �‡,L‡
FP is defined through the following:(

L‡
FPh1, h2

) ≡ (h1,�
‡h2). (B.4)

The explicit form of L‡
FP is

L‡
FP = 1

γ
V ′(θ)

∂

∂θ
+

T

γ

∂2

∂θ2
. (B.5)

The set of eigenvalues, −λj , of this operator L‡
FP is identical to that of �‡. The corresponding

eigenfunctions �
‡
j are labelled such that they satisfy the equation

L‡
FP�

‡
j = −λ∗

j�
‡
j . (B.6)

These eigenfunctions can be chosen so as to satisfy the orthogonality condition(
�

‡
i , �

‡
j

) = δij . (B.7)

Then, differentiating (B.6) with respect to θ , we obtain

LFP�
‡′
j = −λ∗

j�
‡′
j . (B.8)

Thus, applying (B.7), we have

�
‡′
j = −�j (B.9)

for the case j �= 0, and �
‡
0 = 1.
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Now, we define the quantity Q(θ) as

Q(θ) ≡ − 1

γ

∞∑
j=−∞

(�j , V
′)

λj

�′
j (θ). (B.10)

Using (B.3), we calculate

�‡Q = 1

γ
V ′′. (B.11)

Solving this equation, we obtain

Q(θ) = −1 + q1 eβV (θ)

∫ θ

0
dθ ′ e−βV (θ ′) + q2 eβV (θ). (B.12)

The two constants q1 and q2 here are determined by the conditions

Q(0) = Q(�), (B.13)(
�

‡
0,Q

) = 0. (B.14)

Condition (B.13) leads to

q2 = q1
1

eβf � − 1

∫ �

0
dθ ′ e−βV (θ ′). (B.15)

Substituting this into (B.12), we obtain

1 + Q(θ) = q1
eβV (θ)

eβf � − 1

[∫ �

0
dθ ′ e−βV (θ ′) − (1 − eβf �)

∫ θ

0
dθ ′ e−βV (θ ′)

]

= q1

eβf � − 1
I+(θ), (B.16)

where we have used identity (67). Using (B.16) in (B.14) leads to the final form (69).
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